Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Cochrane Database Syst Rev ; 5: CD015201, 2023 05 24.
Article in English | MEDLINE | ID: covidwho-20243540

ABSTRACT

BACKGROUND: Since December 2019, the world has struggled with the COVID-19 pandemic. Even after the introduction of various vaccines, this disease still takes a considerable toll. In order to improve the optimal allocation of resources and communication of prognosis, healthcare providers and patients need an accurate understanding of factors (such as obesity) that are associated with a higher risk of adverse outcomes from the COVID-19 infection. OBJECTIVES: To evaluate obesity as an independent prognostic factor for COVID-19 severity and mortality among adult patients in whom infection with the COVID-19 virus is confirmed. SEARCH METHODS: MEDLINE, Embase, two COVID-19 reference collections, and four Chinese biomedical databases were searched up to April 2021. SELECTION CRITERIA: We included case-control, case-series, prospective and retrospective cohort studies, and secondary analyses of randomised controlled trials if they evaluated associations between obesity and COVID-19 adverse outcomes including mortality, mechanical ventilation, intensive care unit (ICU) admission, hospitalisation, severe COVID, and COVID pneumonia. Given our interest in ascertaining the independent association between obesity and these outcomes, we selected studies that adjusted for at least one factor other than obesity. Studies were evaluated for inclusion by two independent reviewers working in duplicate.  DATA COLLECTION AND ANALYSIS: Using standardised data extraction forms, we extracted relevant information from the included studies. When appropriate, we pooled the estimates of association across studies with the use of random-effects meta-analyses. The Quality in Prognostic Studies (QUIPS) tool provided the platform for assessing the risk of bias across each included study. In our main comparison, we conducted meta-analyses for each obesity class separately. We also meta-analysed unclassified obesity and obesity as a continuous variable (5 kg/m2 increase in BMI (body mass index)). We used the GRADE framework to rate our certainty in the importance of the association observed between obesity and each outcome. As obesity is closely associated with other comorbidities, we decided to prespecify the minimum adjustment set of variables including age, sex, diabetes, hypertension, and cardiovascular disease for subgroup analysis.  MAIN RESULTS: We identified 171 studies, 149 of which were included in meta-analyses.  As compared to 'normal' BMI (18.5 to 24.9 kg/m2) or patients without obesity, those with obesity classes I (BMI 30 to 35 kg/m2), and II (BMI 35 to 40 kg/m2) were not at increased odds for mortality (Class I: odds ratio [OR] 1.04, 95% confidence interval [CI] 0.94 to 1.16, high certainty (15 studies, 335,209 participants); Class II: OR 1.16, 95% CI 0.99 to 1.36, high certainty (11 studies, 317,925 participants)). However, those with class III obesity (BMI 40 kg/m2 and above) may be at increased odds for mortality (Class III: OR 1.67, 95% CI 1.39 to 2.00, low certainty, (19 studies, 354,967 participants)) compared to normal BMI or patients without obesity. For mechanical ventilation, we observed increasing odds with higher classes of obesity in comparison to normal BMI or patients without obesity (class I: OR 1.38, 95% CI 1.20 to 1.59, 10 studies, 187,895 participants, moderate certainty; class II: OR 1.67, 95% CI 1.42 to 1.96, 6 studies, 171,149 participants, high certainty; class III: OR 2.17, 95% CI 1.59 to 2.97, 12 studies, 174,520 participants, high certainty). However, we did not observe a dose-response relationship across increasing obesity classifications for ICU admission and hospitalisation. AUTHORS' CONCLUSIONS: Our findings suggest that obesity is an important independent prognostic factor in the setting of COVID-19. Consideration of obesity may inform the optimal management and allocation of limited resources in the care of COVID-19 patients.


Subject(s)
COVID-19 , Pandemics , Adult , Humans , Prospective Studies , Retrospective Studies , Risk Factors , Obesity
2.
Crit Care Res Pract ; 2021: 9941570, 2021.
Article in English | MEDLINE | ID: covidwho-1304301

ABSTRACT

PURPOSE: To investigate the factors contributing to mortality in coronavirus disease 2019 (COVID-19) patients admitted in the intensive care unit (ICU) and design a model to predict the mortality rate. METHOD: We retrospectively evaluated the medical records and CT images of the ICU-admitted COVID-19 patients who had an on-admission chest CT scan. We analyzed the patients' demographic, clinical, laboratory, and radiologic findings and compared them between survivors and nonsurvivors. RESULTS: Among the 121 enrolled patients (mean age, 62.2 ± 14.0 years; male, 82 (67.8%)), 41 (33.9%) survived, and the rest succumbed to death. The most frequent radiologic findings were ground-glass opacity (GGO) (71.9%) with peripheral (38.8%) and bilateral (98.3%) involvement, with lower lobes (94.2%) predominancy. The most common additional findings were cardiomegaly (63.6%), parenchymal band (47.9%), and crazy-paving pattern (44.4%). Univariable analysis of radiologic findings showed that cardiomegaly (p : 0.04), pleural effusion (p : 0.02), and pericardial effusion (p : 0.03) were significantly more prevalent in nonsurvivors. However, the extension of pulmonary involvement was not significantly different between the two subgroups (11.4 ± 4.1 in survivors vs. 11.9 ± 5.1 in nonsurvivors, p : 0.59). Among nonradiologic factors, advanced age (p : 0.002), lower O2 saturation (p : 0.01), diastolic blood pressure (p : 0.02), and hypertension (p : 0.03) were more commonly found in nonsurvivors. There was no significant difference between survivors and nonsurvivors in terms of laboratory findings. Three following factors remained significant in the backward logistic regression model: O2 saturation (OR: 0.91 (95% CI: 0.84-0.97), p : 0.006), pericardial effusion (6.56 (0.17-59.3), p : 0.09), and hypertension (4.11 (1.39-12.2), p : 0.01). This model had 78.7% sensitivity, 61.1% specificity, 90.0% positive predictive value, and 75.5% accuracy in predicting in-ICU mortality. CONCLUSION: A combination of underlying diseases, vital signs, and radiologic factors might have prognostic value for mortality rate prediction in ICU-admitted COVID-19 patients.

SELECTION OF CITATIONS
SEARCH DETAIL